Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Decentralized coordination is one of the fundamental challenges for societies and organizations. While extensively explored from a variety of perspectives, one issue that has received limited attention is human coordination in the presence of adversarial agents. We study this problem by situating human subjects as nodes on a network, and endowing each with a role, either regular (with the goal of achieving consensus among all regular players), or adversarial (aiming to prevent consensus among regular players). We show that adversarial nodes are, indeed, quite successful in preventing consensus. However, we demonstrate that having the ability to communicate among network neighbors can considerably improve coordination success, as well as resilience to adversarial nodes. Our analysis of communication suggests that adversarial nodes attempt to exploit this capability for their ends, but do so in a somewhat limited way, perhaps to prevent regular nodes from recognizing their intent. In addition, we show that the presence of trusted nodes generally has limited value, but does help when many adversarial nodes are present, and players can communicate. Finally, we use experimental data to develop computational models of human behavior and explore additional parametric variations: features of network topologies and densities, and placement, all using the resulting data-driven agent-based (DDAB) model.more » « less
- 
            null (Ed.)The problem of diffusion control on networks has been extensively studied, with applications ranging from marketing to controlling infectious disease. However, in many applications, such as cybersecurity, an attacker may want to attack a targeted subgraph of a network, while limiting the impact on the rest of the network in order to remain undetected. We present a model POTION in which the principal aim is to optimize graph structure to achieve such targeted attacks. We propose an algorithm POTION-ALG for solving the model at scale, using a gradient-based approach that leverages Rayleigh quotients and pseudospectrum theory. In addition, we present a condition for certifying that a targeted subgraph is immune to such attacks. Finally, we demonstrate the effectiveness of our approach through experiments on real and synthetic networks.more » « less
- 
            Networked public goods games model scenarios in which self-interested agents decide whether or how much to invest in an action that benefits not only themselves, but also their network neighbors. Examples include vaccination, security investment, and crime reporting. While every agent's utility is increasing in their neighbors' joint investment, the specific form can vary widely depending on the scenario. A principal, such as a policymaker, may wish to induce large investment from the agents. Besides direct incentives, an important lever here is the network structure itself: by adding and removing edges, for example, through community meetings, the principal can change the nature of the utility functions, resulting in different, and perhaps socially preferable, equilibrium outcomes. We initiate an algorithmic study of targeted network modifications with the goal of inducing equilibria of a particular form. We study this question for a variety of equilibrium forms (induce all agents to invest, at least a given set S, exactly a given set S, at least k agents), and for a variety of utility functions. While we show that the problem is NP-complete for a number of these scenarios, we exhibit a broad array of scenarios in which the problem can be solved in polynomial time by non-trivial reductions to (minimum-cost) matching problems.more » « less
- 
            Public goods games study the incentives of individuals to contribute to a public good and their behaviors in equilibria. In this paper, we examine a specific type of public goods game where players are networked and each has binary actions, and focus on the algorithmic aspects of such games. First, we show that checking the existence of a pure-strategy Nash equilibrium is NP-Complete. We then identify tractable instances based on restrictions of either utility functions or of the underlying graphical structure. In certain cases, we also show that we can efficiently compute a socially optimal Nash equilibrium. Finally, we propose a heuristic approach for computing approximate equilibria in general binary networked public goods games, and experimentally demonstrate its effectiveness.more » « less
- 
            A fundamental challenge in networked systems is detection and removal of suspected malicious nodes. In reality, detection is always imperfect, and the decision about which potentially malicious nodes to remove must trade off false positives (erroneously removing benign nodes) and false negatives (mistakenly failing to remove malicious nodes). However, in network settings this conventional tradeoff must now account for node connectivity. In particular, malicious nodes may exert malicious influence, so that mistakenly leaving some of these in the network may cause damage to spread. On the other hand, removing benign nodes causes direct harm to these, and indirect harm to their benign neighbors who would wish to communicate with them. We formalize the problem of removing potentially malicious nodes from a network under uncertainty through an objective that takes connectivity into account. We show that optimally solving the resulting problem is NP-Hard. We then propose a tractable solution approach based on a convex relaxation of the objective. Finally, we experimentally demonstrate that our approach significantly outperforms both a simple baseline that ignores network structure, as well as a state-of-the-art approach for a related problem, on both synthetic and real-world datasets.more » « less
- 
            Extensive literature exists studying decentralized coordination and consensus, with considerable attention devoted to ensuring robustness to faults and attacks. However, most of the latter literature assumes that non-malicious agents follow simple stylized rules. In reality, decentralized protocols often involve humans, and understanding how people coordinate in adversarial settings is an open problem. We initiate a study of this problem, starting with a human subjects investigation of human coordination on networks in the presence of adversarial agents, and subsequently using the resulting data to bootstrap the development of a credible agent-based model of adversarial decentralized coordination. In human subjects experiments, we observe that while adversarial nodes can successfully prevent consensus, the ability to communicate can significantly improve robustness, with the impact particularly significant in scale-free networks. On the other hand, and contrary to typical stylized models of behavior, we show that the existence of trusted nodes has limited utility. Next, we use the data collected in human subject experiments to develop a data-driven agent-based model of adversarial coordination. We show that this model successfully reproduces observed behavior in experiments, is robust to small errors in individual agent models, and illustrate its utility by using it to explore the impact of optimizing network location of trusted and adversarial nodes.more » « less
- 
            The spread of unwanted or malicious content through social me- dia has become a major challenge. Traditional examples of this include social network spam, but an important new concern is the propagation of fake news through social media. A common ap- proach for mitigating this problem is by using standard statistical classi cation to distinguish malicious (e.g., fake news) instances from benign (e.g., actual news stories). However, such an approach ignores the fact that malicious instances propagate through the network, which is consequential both in quantifying consequences (e.g., fake news di using through the network), and capturing de- tection redundancy (bad content can be detected at di erent nodes). An additional concern is evasion attacks, whereby the generators of malicious instances modify the nature of these to escape detection. We model this problem as a Stackelberg game between the defender who is choosing parameters of the detection model, and an attacker, who is choosing both the node at which to initiate malicious spread, and the nature of malicious entities. We develop a novel bi-level programming approach for this problem, as well as a novel solution approach based on implicit function gradients, and experimentally demonstrate the advantage of our approach over alternatives which ignore network structure.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available